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Abstract. Different numerical methods for accurate calculation of low-lying eigenvalues 
of lattice Hamiltonians are proposed and critically compared. A dynamical procedure, 
called basis vector importance sampling, is shown to select the relevant subspace of the 
Hilbert space very effectively. This method is used to compute the mass gap of O(2) 
symmetric quantum chains up to a length of nine sites. Kosterlitz-Thouless type freezing 
transitions of Z ( p )  symmetric chains are also studied via the spectrum of quantum kinks. 

1. Introduction 

Finite lattice techniques are essential tools for exploring field theories. The numerical 
solution of the transfer operator in finite strips was used in the context of the so-called 
‘phenomenological scaling theory’ (Nightingale 1976), which is recognised as one of 
the most reliable methods for extracting critical properties in various statistical 
mechanical systems (for a review see Barber (1983)). In the Hamiltonian formalism 
low-lying eigenvalues of finite two- and three-dimensional models have been computed 
for both spin and gauge systems (Roomany and Wyld 1980, 1981, Hamer and Barber 
1981a, b, c, Irving and Thomas 1982, Hamer and Irving 1983, Irving et al 1983). 

This paper deals with spectrum calculations in the Hamiltonian formalism. The 
general structure of the H operator is 

A=kZ-xt  

where k is the kinetic energy, ? is the potential energy and x plays the role of the 
coupling (or inverse temperature). The evaluation of the mass gap in models of type 
(1.1) has been performed using mainly two different methods. Hamer (1979) put 
forward a simple but efficient method which consists of computing all matrix elements 
of A in the finite subspace generated by the action of en ( n  C nmax) on the x = 0 
ground state. The resulting matrix has a typical dimensionality of (1-3) x lo4 and is 
diagonalised by standard routines. The other method, proposed by Roomany et al 
(1980) is the Lanczos algorithm (see Wilkinson 1964). The starting vector for this 
procedure is chosen generally to be the x = 0 ground state and the auxiliary vectors 
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are stored through their components in the strong coupling basis (eigenbasis of the 
operator I?). The former method has faster convergence while the latter requires 
smaller storage. A proposal which has both advantages was made recently by Alberty 
et a1 (1984). 

In field theory one attempts to solve the eigenvalue problem in the vicinity of the 
critical point. In asymptotically free theories one has to work in the deep weak coupling 
region. There the dimensionality of the subspace spanned in the strong coupling basis 
necessary to reach a prescribed accuracy becomes horribly large. 

The central idea of the present investigation is to closely follow the shape of the 
ground-state vector by appropriately selecting the relevant subspace from the full 
Hilbert space. This means that in a given basis (usually the strong coupling, x = 0 
basis) one retains only those axes whose overlap with the eigenvector is sufficiently 
large. We call this principle basis vector importance sampling ( B V I S ) .  This terminology 
has been borrowed from the Green function Monte Carlo method (Ceperley and Kalos 
1979), where a similar idea was introduced in order to make the stochastic evaluation 
of the ground-state energy more efficient. 

In $ 2 the BVIS principle is implemented using a variational technique. Starting 
with an  optimised trial vector one first calculates its components in the strong coupling 
basis. A finite Hilbert subspace is then selected according to the chosen trial vector 
by neglecting those directions where its components are smaller than a given bound. 
The Lanczos iteration proceeds in this j x e d  subspace. In this way one obtains 
significant storage savings. In 5 3 the B V I S  is built into the algorithm of Alberty et al 
(1984). This version is very flexible and allows for a continuous tailor-made choice 
of the Hilbert subspace following the ‘figure’ of the actual eigenvector. The O(2) 
invariant quantum ring with nearest-neighbour interactions serves as an  illustration 
for these two sections. 

A complete description of our data for the O(2) chains follows in § 4. The new 
data (relative to chains solved earlier with the conventional Linczos technique) come 
from chains of length N = 8 and 9. They allow a more accurate location of the critical 
point and  parametrisation of the singularity in the correlation length. Up to size N = 8 
we could avoid the use of any artificial truncation of the Hilbert space (like the angular 
momentum cut-off /L/,,,=3 applied by Roomany and Wyld (1980)). The BVIS pro- 
cedure is self-correcting, truncating the Hilbert space automatically in dimensions - I O4 
for N S 8. The data are analysed using finite size scaling and convergence improving 
techniques. Instead of the Roomany-Wyld approximant to the p function we propose 
to construct directly the finite scale change coupling renormalisation function Ag(g). 

We have also applied the method of 8 3 to investigate the elementary kink 
excitations (walls or interfaces in the Hamiltonian limit) in Z( p )  symmetric models. 
This is a novel approach to the determination of critical characteristics of these systems. 
Our results were obtained by analysing the energy difference of the respective ground 
states with periodic and  twisted rings. They compare favourably with critical points 
and indices from the dual investigations (Roomany and  Wyld 1981). Here only 
preliminary data will be shown to illustrate the efficiency of B V I S ,  a full presentation 
of the kink spectrum will be published separately (Patk6s and Rujan 1985). In both 
applications we have determined eigenvalues to the accuracy reported in earlier 
publications. Advantages of the proposed method are demonstrated, therefore, through 
the reduced dimensionality of the Hilbert space. The alternative view, which would 
use subspaces of maximal available dimensionality for finding eigenvalues of higher 
accuracy, has not yet been pursued in detail. 
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2. Lanczos iteration of variational ground-state vectors 

A general Lanczos step consists of the following recursion 

I+*, = f n - , ( I l n - l + g , k  +fn*n+l (2.1 ) 

= 0, ($,, $,) = a,,) which defines $,,+, using $,, iteratively. Usually one starts 
chosen to be the x = 0 ground state of the O(2)-invariant Hamiltonian (Luther with 

and Scalapino 1977): 

(2.2) 

where 4 k  E [o, 27r] and Lk = i a/d@,. The $k  vectors are stored through their components 
in the Li-eigenstate-basis 

dim 

(Lo= b ,  = ( O , O ,  0 , .  . . , O ) ,  *, = c Qlbl, 
I = l  

( 2 . 3 )  

where b1(2 dim) are those basis vectors which arise in the nth successive applica- 
tion of fi  to b, .  They are added to the basis vector-list ( B V L )  in the order of their 
appearance. A code uniquely characterising the N angular momentum eigenvalues 

1 

b, = ( n l , ,  n12, . ' . 1 H I ,  1 (2.4) 

is stored in the computer memory. We used a translationally invariant basis. The 
application of H to any vector is written in this basis as follows 

+ a [ n , ,  . . . , nk - I ,  n k t ,  + I , .  . . , n N ] } .  (2.5) 

The recursion was performed by storing x k  n: and using an auxiliary list containing 
all those 6, from which bl, can be reached through the potential in (2.5). 

The dimensionality of the Hilbert space spanned in the above procedure is restricted 
by the finite fast-storage capability of the computer. However, the Lanczos iteration 
can be performed until this finite, fixed, Hilbert space is exhausted. The diagonalisation 
of the resulting tridiagonal matrix yields the eigenvalues of the Hamiltonian projected 
onto the maximal subspace. 

The convergence of the Lanczos procedure in a fixed subspace is quite slow, as 
has been already pointed out by Hamer and Barber (1981~) .  A possible cure could be 
to use for a state having a bigger overlap with the x # 0 ground state. 

Our suggestion is to start with the variationally optimised ansatz 

which has been extensively studied in infinite systems with both local and global 
symmetries (Greensite 1979, Horn and Karliner 1984). An elementary computation 
yields a ( x )  also for finite systems. a ( x )  was determined for the O ( 2 )  chain by 
minimalising the following eigenvalue estimate 

- I  

E o s m i n ( a  a - ~ ) N c  n [1,+,(2a)+ 1 n - , ( 2 a ) ~ 1 y - l ( 2 a ) (  2 n 1:(2a)) . (2 .7)  
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As above, cL0 was stored through its &-basis components, the reason being that the 
maximal Fourier component of (2.6) belongs again to 

b,  = (0 , .  . . , O ) .  

At each updating of the basis the corresponding Fourier component of (2.6) is simul- 
taneously computed. After exhausting the basis, the vector is normalised to unity on 
the subspace. The effect of implementing BVIS in the Lanczos iteration will be illustrated 
in table 1 for the ground-state eigenvalue of a five-site periodic chain in the weak 
coupling regime (x  = 2). The entries in the subsequent rows of table 1 are estimates 
of the ground-state energy after the corresponding number of iterations. Comparing 
columns 1 and  2 we see that the variational leads to fast convergence down to 1% 
level of accuracy but a high accuracy solution needs the same number of iterations as 
without variational input. Nevertheless, this algorithm suggests a very powerful way 
of storage saving, which we call basis vector importance sampling. The main idea is 
to discard all those basis vectors for which the ratio aTr/ayar is smaller than an  
arbitrarily prescribed r value. In practice r = was used. The extension of the 
Hilbert space can even stop pefore reaching the maximally allowed dimensionality if 
in the actual application of V the new vectors d o  not fulfil the selection criterion. The 
form of (2 .6)  ensures that this type of vector will not occur in the later steps either. 
A substantial reduction in the dimensionality of the Hilbert space sufficient to determine 
the lowest eigenvalues to six decimal places can be observed. This fact is demonstrated 
in the third column of table 1. However, the number of the necessary Linczos iterations 
remains unchanged. 

We also tested the moment method devised by Bessis and Villani (1975), which is 
equivalent in the unrestricted Hilbert space to the original Lhnczos iteration. We 
performed the test in a truncated space spanned by the ‘important’ components of 
(2.6) with r = A systematic overshoot was observed when the order of the moments 
taken into account was increased, followed by a relaxation to the true ground-state 
eigenvalue. At x = 2, one has to calculate 17 moments for a five places accurate estimate 

Table 1. Comparison of the Lanczos iteration scheme (second column) to variationally 
started iteration (third column) and to implemented basis vector importance sampling 
(fourth column). LI stands for Ldnczos iteration and data represent ground-state energy 
values of five-site O(2) chain at x = 2. 

Ordinary LI on Ordinary LI on LI with basis vector 
Order of LI  sc ground state var. ground state importance sampling 

I -2.3 16 62 -4.289 25 -4.289 25 
2 -3.520 36 -4.338 15 -4.338 22 
3 -4.156 29 -4.335 56 -4.356 02 
4 -4.3 12 48 -4.363 30 -4.364 25 
5 -4.352 94 -4.367 14 -4.368 14 
6 -4.366 32 -4.369 04 -4.369 75 
7 -4.369 52 -4.369 93 -4.370 43 
8 -4.370 38 -4.370 38 -4.370 69 
9 -4.370 64 -4.370 63 -4.370 77 

12 -4.370 80 -4.370 80 -4.370 81 

dim 1000 IO00 609 ( r = ~ 0 - 3 )  
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and there is a 20 order of magnitude change in these quantities. This makes this 
algorithm sensitive to the accuracy of higher moments. Our experience disfavours it 
in comparison with the Lanczos iteration with basis vector importance sampling. 

A variant of this idea will be carried over to 0 3, where also the efficiency of the 
genuine Lanczos iteration will be improved by some additional simple modifications. 

3. Lanczos iteration with continuous basis vector importance sampling 

The concept of basis vector importance sampling introduced previously restricts the 
eigenvalue problem to the Hilbert subspace which fits the shape of the trial eigenvector. 
The variational state (2.6) is adequate in the strong coupling region and may be in the 
crossover region, but not in the weak coupling regime. It would be more convenient 
to work with an algorithm which finds the low-lying states iteratively, so that their 
evolution could be monitored at each iteration step. Then the basis vector importance 
sampling procedure might flexibly follow the shape of the eigenvector. 

An algorithm to meet our goals might be a variant of the procedure proposed by 
Alberty et al (19!4). Consider the series of Hilbert subspaces arising from subsequent 
applications of V to the starting x = 0 ground-state vector: 

(3.1) 

A sequence of 2 x2 Lanczos iterations is used to find the best ground state &(,,,) and 
energy E ~ , ( , , , )  in X,,,. The basis vector importance sampling is implemented by the 
following rule. 

If ( &(,,,), 6 l ) ,  6, E Xm is smaller than an arbitrarily fixed constant F, the action of 
? on b, is cancelled when extending Xm to X,,,,,. One has to emphasise that bl itself 
is never erased from the BV list if once it has been put on it. I f  at some later stage 

61) exceeds r' (we have used in our study r '= 10-3-10-5), the vectors { h,} are 
added to the base. 

The actual series of Hilbert subspaces will be 

Our experience with the O(2) and Z (  p )  invariant chains shows that the dimensionality 
of the subspaces sufficient to determine the lowest eigenvalues to six decimal places 
can be reduced considerably (we found a reduction factor of 2 to 4). 

We have determined the ground-state and the first excited-state eigenvalues of O ( 2 )  
invariant chains with nearest-neighbour interaction up to length 9. The gap state was 
found in ;he J = 1 sector of the Hamiltonian, which is spanned by subsequent applica- 
tions of V on 

1 6(.'=1) -- , - - c (0 ) . . . ,  0,1,0 ) . . . )  0). J N trans1 
(3.3) 

The longest chain considered by Roomany and Wyld (1980) contained seven sites. 
The Hilbert space there has been truncated putting lJmaxl = 3 and they have dealt with 
a - 9000 dimensional subspace. For the same length and without applying any angular 
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momentum cut-off, we obtained (using r'= an  0(10-5) accurate solution in 
dimensions less than 4000. Table 2 illustrates the variation of the effective dimensional- 
ity as a function of x for both the ground and the excited state. 

Table 2. Effective dimensions of Hilbert subspaces when the parameter r = I O - ?  in the 
B V I S  for the O(2) chain. No truncation is performed in J,,, .  

Number of 
sites State Coupling (x )  

1.6 I .8 2.0 2.2 

ground 2491 2853 3191 3563 

excited 2553 2908 3345 3642 
7 

ground 6456 7591 8588 9604 

excited 6501 7603 8643 9715 
8 

It is evident, however, that the basis vector importance sampling is effective only 
in the range where the strong coupling basis is adequate. For the O(2)  system its 
application greatly increases the efficiency because the phase transition occurs around 
x = 2. The maximal dimensionality was reached in the nine-site system (dim = 25 000), 
where besides r'= 1 0-3 we had to apply also an  angular momentum cut-off. The storage 
required for the BV list was then around 8 M B  and the CPU time needed for the 
calculation of one point was around 40 min in an  IBM 3081 machine. The angular 
momentum cut-off was J,,, = 4. 

is the 
appropriate choice. Following Elitzur et a1 (1979) we have considered the Z ( p )  
invariant Hamiltonian: 

For the study of the weak coupling phase the use of the eigenbase of 

(3.4) 

which in the p + CO limit goes over into (2.2). The conjugate variables n, and L, fulfill 
the commutation relations [ n ,  L,]  = i(p/27r)&,. We have investigated the dependence 
of the ground-state eigenvalue on the boundary conditions: 

The energy difference 

mr = EO. /  - Eo.0 (3.6) 

defines the mass of a kink of strength 1. In the disordered high-temperature phase 
ml = 0 for all values of 1. This corresponds to the introduction of interfaces in the 
transfer-matrix formalism (Nightingale and Schick 1982). 

The twisted boundary conditions require 

tLo,I(ni . . . n N )  = t L o , r ( ( n N  + I ) ,  nl ,  . . . 9 n N - l ) .  (3.7) 
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We start the iteration from the Z( p )  and translationally invariant states: 

+ .  . . ( ( k i  I ) ,  . . . , ( k +  11, k ) } ,  I =  1 (3.8) 

and  so on for higher values of 1 ; ( k  + 1)  means ( k  + 1 ) mod p .  

(for simplicity the symmetrisation of the basis is not presented here): 
The analogue of recursion (2.5) reads as follows in the configuration representation 

+ a [ n , ,  . . . , nk - 1,. . . , nN1} 

In order to find the eigenvalues of (3.4) one has to add to the spectrum of (3.9) the 
value N / (  1 -cos 2 ~ / p ) .  

We have evaluated the respective ground states of the periodic and twisted chains 
for N = 2-6 site lattices up  to p = 9. The maximal dimensionality used for the six-site 
Z(9) system was -1500 in the translationally invariant basis. The neighbourhood of 
the critical point of this model could be described in a -450 dimensional vector space 
in the case of the five-site chain instead of the full -1300 dimensional space. Although 
the implementation of BVIS requires extra program steps, the reduction of the necessary 
subspace leads to a faster algorithm. For example, at x = 9, in the five-site Z ( 9 )  system 
the ground-state eigenvalue required -6 s CPU time on the IBM 3081, while the ordinary 
Lfinczos algorithm needs - 13 s. We notice also that with the present algorithm much 
longer chains can be treated in the low-temperature critical region of Z(  p )  models for 
p 3 7 .  

4. Finite size scaling analysis of the mass gap in the O(2) chain 

We have determined the mass gap values for O(2)  chains of length u p  to nine spins. 
One possibility of extrapolating these values to the N =CO limit is to use the finite size 
scaling assumption (Fisher 1971, Fisher and  Barber 1972, Roomany and  Wyld 1981): 

Mg( x = xc, N )  = A/ N.  (4.1) 

x, is determined by measuring the power of N from the log-log plot as shown in figure 
1 for three characteristic x values. Figure 1 clearly indicates that the Kosterlitz-Thouless 
transition point cannot be located accurately, although the existence of a critical line 
is suggested very convincingly by the values of the ratios 

displayed in table 3. Except for N = 9 the values are correct up  to O( at N = 9 



1772 A Patko's and P Rujan 

0 . 6  -I 

0 . 1  ~ 

2 3 4 5 6 7 8 9  

N 

Figure 1. Log-log plot of the mass gap M,(x, N) against N for x=1.6, 2.0 and 2 .3  in the 
O(2) model. The slope varies from =0.95 to 1.02, respectively. 

Table 3. R,,= N M , ( x ,  N ) / ( N - I ) M , ( x ,  N - I )  ratios for the O(2) chain. Note that for 
x >  1.7 the results for nine sites are biased by the J,,,=4 truncation. R , > ( x ) =  
N M ,  ( x i / ( N  - 1 ) M ,  - , ( x ) .  

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 N 

4 1.0203 1.0147 1.0106 1.0105 1.0054 1.0037 1.0026 1.0017 1.0011 
5 1.0161 1.0112 1.0077 1.0052 1.0034 1.0023 1.0014 1.009 1.0005 
6 I .O I36 1.0090 1.0060 1.0039 1.0023 I .OO I5 1.0009 1.0005 1.0002 
7 I .O I 17 1.0076 1.0048 I ,003 I 1.002 1 1.0009 1.0005 1.0004 
8 1.0103 1.0067 1.0042 1.0025 1.0018 1.0010 1.0005 1.0004 
9 1.0096 1.0059 1.0037 1.0033 1.0022 1.0034 1.0032 1.0030 

the angular momentum cut-off lJmax1 = 4 has biased the data for x L 1.7 towards the 
strong coupling values. 

In order to obtain more accurate results both for x, and the scaling law, more 
sophisticated extrapolation techniques to speed up  the convergence were invoked. We 
used sets of data N = 1, 2, 5 ,  8 ;  N = 1,  2, 4, 8, etc in a modified self-consistent 
Romberg-type algorithm (Beleznay 1984). The main idea is to fit the mass gap to an  
asymptotic expansion of the form 

3 

I = l  
M J x ,  N )  = M f ' ( x ,  N )  C AIN-"'. (4.3) 
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By subsequent elimination of AI, A2 and A, in the final step one extrapolates the mass 
gap to zero. The intermediate estimates can be ordered into the following scheme 

( N I  M)"' 

( N 2 M ) ( ' )  ( N 2 M ) " '  

( (  N i M ) ( ' ,  = NiM; ' (x ,  Ni)): 

(Nk-1 kf)'k-2' 

(NkM)'" (NkM)"' . , . ( N k M ) ( k - 2 )  ( NkM)'k-".  

The index a is determined by requiring that the difference NkMLk-*)(x,  Nk) - 
N k - I M : - * ) ( X ,  N k - ] )  is minimal. Then the errors of our data are taken into account 
and the error of cx established. Recalculating the sequence with a f i x e d  within this 
bound, one obtains a new error estimate for the extrapolated gap values which should 
be consistent with the error due to the finite precision of the data. This extrapolation 
procedure seems to give better results than the Van den Broeck-Schwartz (1979) 
procedure (Beleznay 1984). Figure 2 contains values of the extrapolated gap obtained 
through this procedure for different sets of data. The transition point seems clearly 
to be at xc= 2.00*0.05 both from the a(x, )  = 1 condition, and also from the error 
analysis when cx is fixed to be equal to unity. The error of the extrapolated mass gap 
is then minimal around x = x,. Note that MExtra = 0 is also within error bars for x > x,. 

L 

i ' 0  
i 

X 

Figure 2. Extrapolated mass gap values of O ( 2 )  chains using a modified self-consistent 
Romberg algorithm. Crosses are results extrapolated from N = 1, 2 ,  4, 8 while circles and 
squares correspond to N = I ,  2 ,  5 ,  8 and N = 2 ,  4, 6 ,  8 respectively. 
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In a recent paper Luck (1984) has presented a detailed discussion of the different 
types of corrections to finite size scaling laws of type (4.1). Some corrections are due 
to the reparametrisation of temperature in terms of nonlinear scaling fields (Privman 
and Fisher 1983), others are due to irrelevant operators. The main correction originates 
from corrections to scaling and  is governed by the leading correction exponent (Derrida 
and de  Seze 1982): 

NMg(x,, N )  = A,+L BIN-"". (4.4) 
I 

Applying the Romberg scheme to eliminate B, ,  B2 and B3, A. was calculated u p  
to 0 ( N - 4 w )  accuracy. At x,  = 2 the value of A,  was 1.045( 1 )  for w = 0.95. This 
indicates that the O(2) chain does not obey the relationship (Derrida and de  Seze 1982) 

Ao= TV (4.5) 

found in other models and  resulting from the conformal invariance near a critical 
point in two dimensions (Cardy 1984). 

A second possibility for extrapolation is to consider ( 1 . 1 )  as the discretisation of 
some continuous field theory on a finite length (15) ring. Then the requirement of the 
invariance of the physical mass when the number of sites is changed by a factor A is 
expressed as 

gNM,(x, N )  = g'N'M,(x ' ,  N ' ) ,  A = N ' /  N,  x = 2/g2. (4.6) 

This allows one to deduce the function Ag,(g) = g ' -  g,  which becomes zero at the 
critical point. In figure 3 we display gNM, for different N's  as a function of g. It is 
clear that for g s 1 ,  the curves are almost identical. We have calculated h g  for A =; 
and A =: in the region X E  [1.7-1.951 and using Lagrange's interpolating polynomials 
we have extrapolated them to zero. In this way we have obtained for the critical 
coupling the following estimates: 

A = 2 ,  g K ,  = 0.983 ( x K T  = 2.07), 

A = x  7 ,  g,, = 0.998 (XKT= 2.01). 

I 

0 95 1 0 0  ' O S  110 ' 15 

9 

Figure 3. The physical mass gap g N M ,  in O(2) chains. 
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Next one can test the Kosterlitz-Thouless scaling as characterised by the /3 function 
(Hamer and Kogut 1979, Hamer and Barber 1981): p ( g )  = (g-g,,)'+". 

Assuming this behaviour (without correction) in the above region and  integrating 
the definition of p ( g )  

P ( g )  = a aglaa 

one arrives at 

(4.7) 

and  Ag(g,) = g,-g,. From figure 3 we see that Ag<< lg,-gKTl, therefore (4.7) can be 
linearised in Ag. Putting into this simplified form the value of g,T found above, one gets 

A -2:  a = 0 . 5 4  

A = $ :  u = 0 . 4 5  (4.8) 

which agrees fairly well with U = predicted by Kosterlitz (1974). 
If the finite lattice effects really were minor, then the A = 2 = $  and A =! results 

should coincide. Unfortunately, they are significantly different, which means that 
longer chains are necessary to reach the true asymptotics. 

5. Kink mass calculation in Z(p)-symmetric chains 

In  this section we present some preliminary results concerning the calculation of the 
kink mass spectrum in Z ( p )  models. As explained in § 3 kinks are non-perturbative 
low-temperature weak coupling excitations corresponding to interface-type objects in 
the Euclidean formulation. Kinks are imposed into the quantum chain through 
appropriate twisted boundary conditions. In  field theoretical terms kinks are lattice 
counterparts of solitons (which are real, observable, particles) while the Euclidean 
vortex excitations are instantons (pseudo particles travelling in imaginary time). In 
the Hamiltonian limit the Kosterlitz-Thouless transition can be related to the condensa- 
tion of kinks (Patk6s and Rujin 1979). 

Here we consider Z (  p)-symmetric Hamiltonians of the form 

277 277 
HA = COS - L ,  - A cos -(nl  - n,,, ), 

I P  I P  

which are self-dual, that is 

H A  = AH,,,. ( 5 . 2 )  

The parametrisation (5.1) is related to (3.4) by 

x=A[l  - c o s ( ~ T / ~ ) ] - ' .  (5.3) 

We use the BVIS to investigate the three-phase structure of these models ( p 3 5) (Elitzur 
et a1 1979, Horn et a1 1979). The physical mechanism underlying the two phase 
transitions was analysed by Einhorn er a1 (1980). They have shown that for A K T <  1 
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a Kosterlitz-Thouless transition occurs between the paramagnetic, disordered phase 
and a massless phase as indicated by the exponential divergence of the correlation 
length. At the low-temperature A,, = l/AKT transition point a p-fold symmetric magnetic 
phase transforms into the massless phase. Note that the self-duality relation ( 5 . 2 )  
implies similar critical behaviour only for ground-state properties and correlations 
invariant under both Z (  p )  and translational symmetry transformations, but not for 
mass gap type properties. It is thus of interest to characterise the low-temperature 
phase transition using the behaviour of the elementary (twist- 1) kink-mass. We present 
here only results for the Z(9)  model, where the presence of the middle massless phase 
is well established. According to Roomany and Wyld (1981) the KT transition occurs 
at x = 2 ,  and hence x,.-9.2. It is clear that an  accurate diagonalisation using the 
L basis requires very large subspaces, and in this basis the application of BVIS is useless. 

In our calculation we used the configuration basis and the recursion (3.9). The 
energy difference of the ground states with periodic and twist-1 boundary conditions 
was determined for N = 3-6 long chains and  is presented in table 4. We have also 
compared the ground-state energy of periodic chains with the O(2) chains of the same 
length. We have found that in this respect the Z(9)  model ground-state energy differs 
by -2% from that of the O ( 2 )  system and  as expected on the basis of the correlation 
inequalities the Z (  p )  eigenvalues approach the p + 

A similar analysis to the one presented in 8 4 was performed on the data of table 
4. A simple look at the ratios (figure 4) 

O(2) values from below. 

Rkink= NMk(x, N ) / ( N - I ) M k ( x ,  N-1) (5.4) 

already makes evident that the kink mass vanishes exponentially, as for a Kosterlitz- 
Thouless transition. Our data give 

xc(!) = 9.387, xc($) = 9.247, x,(:) = 9.218 (5.5) 

which is in very good agreement with the dual value of 9.135 (Roomany and  Wyld 1981). 
For the illustration of the effectiveness of the BVIS in Z(9 )  chains we add  that for 

N = 6 periodic systems the ground-state energies were found from a - 1400 dimensional 
subspace (close to the critical point), while the full Hilbert space is - I O 4  dimensional. 

’ 0 0 5 t  4 1 3  
5 1 4  
s i 5  

R,  
’ o o o t  

0 9 9 5  1 

8 9 10 11 

x 

Figure 4. Kink-mass ratios (equation (5.4))  for Z(9) chains. N ’ /  N = ;, 2, and 2, respectively, 
in the order of decreasing slope. 
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Table 4. Ground-state energy (first row) and N M , ( x ,  N )  kink-mass (second row) values 
for the Z ( 9 )  chain at low temperatures. 

4 5 6 

8.5 - 18.987 63 
1.852 419 

1.982 733 
9.2 -20.844 296 

2.035 725 
9.4 -21.377 186 

2.068 922 I 
10.0 -22.98 I 905 

2.252 916 
10.5 -24.325 766 

2.393 202 

9.0 -20.3 12 455 

-24.965 584 
1.847 264 

-26.722 898 
1.980 08 

-27.428 482 
2.034 352 

-28.135 536 
2.089 316 

2.258 672 

2.405 292 

-30.265 162 

-32.049 084 

-3 1.008 35 
1.844 52 

1.97891 

2.034 130 

2.09 065 

2.263 3 15 

2.414474 

-33.199 875 

-34.079 861 

-34.961 733 

-37.618 146 

-39.843 634 

-37.081 940 
1.842 078 

-39.708 528 
1.971 768 

-40.763 221 
2.034 060 

-41.820 230 
2.090 784 

-45.004 366 
2.266 770 

-47.672 121 
2.422 014 

6. Conclusions 

The main obstacle blocking progress in numerical solutions of lattice regularised field 
theoretic Hamiltonians is the necessity of exceedingly large subspaces in order to 
obtain high accuracy eigenvalues. The basis vector importance sampling has the virtue 
of slowing down the explosive increase of the dimension when one moves away from 
the strong (weak) coupling regime, but of course cannot remedy the lack of a more 
appropriate basis. Our calculations were partly inspired from and have some implica- 
tions on Green functions Monte Carlo type methods for the stochastic diagonalisation 
of such Hamiltonians. For example, we now know that for nine-site O ( 2 )  chains 
around x = 2 a five digit accurate ground-state energy can be obtained only from a 
subspace with a dimensionality around 25 000, even if variational importance sampling 
is used. This implies much larger populations and longer runs than the ones performed 
up  to date. 

The most interesting field theoretical models have to be examined deep in the weak 
coupling region, where the configurational basis is the most appropriate one. Its 
definition implies the discretisation of the field variables, preferably by defining also 
the discrete version on a group manifold. Our Z (  p )  example demonstrates the effective- 
ness of the BVIS principle in such situations, too. Discrete subgroups of the physically 
interesting Lie groups have been used with some success in Lagrangian Monte Carlo 
investigations. We believe that a similar approach to Hamiltonian non-Abelian theories 
would be extremely interesting. 

New results of the present paper support the Kosterlitz-Thouless predictions for 
the O(2) phase transition. However, even the use of the new data is not sufficient to 
remove the uncertainty in the critical parameters when different convergence improving 
methods are applied. Our results also indicate that the fluctuations do  not obey 
conformal symmetry near the KT transition. This may be related to problems of 
degeneracy of conformal operators in the O ( 2 )  model (Fateev, private communication). 

A preliminary study of the low-temperature transition in Z ( p )  models using the 
kink as order parameter shows that the kink mass vanishes exponentially ( p  = 9) 
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around x = 9.2. The full description of the massless phase of Z( p )  models ( p 2 5 )  in 
terms of kinks of different strength support the picture of a continuous kink condensa- 
tion (Patkos and RujBn 1979) and will be published elsewhere (Patk6s and RujBn 1984). 
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